
Probabilistic Programming
and Artificial Intelligence

Acknowledgements
With the fiscal support of:

Standing Row (L to R): Feras Saad, Marco Cusumano-Towner,
Jonathan Rees, Sara Rendtorff-Smith, Josh Thayer, Zane Shelby,
Ulrich Schaechtle
Seated Row (L to R): Vikash Mansinghka, Amanda Brower, Desiree
Dudley, Cameron Freer, Alex Lew, Tim Trautman

The Probabilistic Computing Project:

Outline
1. Motivation

2. What is probabilistic programming?

Pedagogical example: simple (or not-so-simple) curve fitting

3. Programmable inference, not just black-box

Application: machine perception via inverse graphics

4. Learning the structure and parameters of probabilistic programs

Application: automatic data modeling for scientific data analysis

5. The MIT Modeling and Inference Stack

Exuberance about machine learning and "big data"

Machine learning success story: AlphaGo Zero

Silva et al., Nature 2017

The limitations of machine learning

Go

same rules for ~2,500 years

one winner, one loser

Autonomous
driving

simulations are available, but
environment varies widely

drivers and pedestrians have
complex & conflicting objectives

Cancer

every cancer cell is different

treatment requires life-and-death
tradeoffs

Challenge #1: Machine common-sense, at the level of an 18-month-old

Challenge #2: Machine expert systems that help human experts
collaboratively interpret empirical data

Prior knowledge from:
- Epidemiologists
- Economists
- Field workers
- Policy advocates
- Stakeholders

Data

What we need

Intelligence is not just about pattern recognition.

It is about modeling the world…
o explaining and understanding what we see.
o imagining things we could see but haven’t yet.
o making judgment calls in ambiguous situations.
o problem solving and planning actions to make these things real.
o building new models as we learn more about the world.
o sharing our models with each other, via language.

Outline
1. Motivation

2. What is probabilistic programming?

Pedagogical example: simple (or not-so-simple) curve fitting

3. Programmable inference, not just black-box

Application: machine perception via inverse graphics

4. Learning the structure and parameters of probabilistic programs

Application: automatic data modeling for scientific data analysis

5. The MIT Modeling and Inference Stack

The need for probabilistic programming

Causal models

Deep neural networks

Symbolic programs

Hierarchical Bayesian models

What is probabilistic programming?

Two technical ideas:

1. Models can be represented using programs that make stochastic choices

2. Operations on models can be represented as meta-programs

What is probabilistic programming?

Two technical ideas:

1. Models can be represented using programs that make stochastic choices

2. Operations on models can be represented as meta-programs

Inference - finding probable values for latent variables
Learning - finding probable model parameters and structure models given data
Querying - making predictions for previously unseen data, given a model
Analysis - estimating the amount of information between variables in a model

Curve fitting with model selection and outlier detection

Four data sets

As a graphical model

N

yi

zi

θ

k

xi

Has variable
dimension// Choose degree of polynomial

// Choose coefficients
// Choose outlier assignments

As a probabilistic program

"degree" 1

"theta-1" 1.20

"theta-2" -0.20

"outlier-1" false

"outlier-2" false

"outlier-3" false

"outlier-4" false
"y-1"

-0.22
"y-2"

0.10
"y-3"

-0.70
"y-4"

1.60

One possible execution trace
of the program

with input x = [-3, 0, 2, 3]
and output y = [-0.22, 0.1, -0.70, 1.60]

@probabilistic function model(x::Vector{Float64})

prior over degree of polynomial
degree_prior = [0.25, 0.25, 0.25, 0.25]

generate degree (either 1, 2, 3, or 4)
degree = @choice(categorical(degree_prior), "degree")

generate parameters
parameters = Vector{Float64}(degree+1)
for k=1:(degree+1)

parameters[k] = @choice(normal(prior_mean, prior_std), "theta-$k")
end

generate data
y = Vector{Float64}(length(x))
for i=1:length(x)

if degree == 1
y_mean = dot(parameters, [1., x[i]])

elseif degree == 2
y_mean = dot(parameters, [1., x[i], x[i]^2])

elseif degree == 3
y_mean = dot(parameters, [1., x[i], x[i]^2, x[i]^3])

else
y_mean = dot(parameters, [1., x[i], x[i]^2, x[i]^3, x[i]^4])

end
is_outlier = @choice(flip(prob_outlier), "outlier-$i")
noise = is_outlier ? outlier_noise : inlier_noise
y[i] = @choice(normal(y_mean, noise), "y-$i")

end
end

Inference in a probabilistic program

(trace, weight) = query(program, args, observations)

Distribution on traces induced by executing program
(e.g. the prior)

Distribution on traces sampled during query execution
(e.g. the posterior approximation)

Distribution on traces conditioned on observations
(e.g. the posterior)

Weight
(e.g. importance weight)

Querying a probabilistic program

observations = Trace()
observations["y-1"] = -3.0
observations["y-2"] = 0.0
observations["y-3"] = 2.0
observations["y-4"] = 3.0
(trace, weight) = query(model, ([-3, 0, 2, 3],), observations)

query(..)

observations
query(..)

Querying a probabilistic program

observations = Trace()
observations["y-2"] = 0.0
(trace, weight) = query(model, ([-3, 0, 2, 3],), observations)

Observing a single data point

query(..)

observations
query(..)

Approximate posterior samples

Four data sets

Approximate posterior samples

Inferences using model
without outliers

Four data sets

Approximate posterior samples

Inferences using model
without outliers

Four data sets

Inferences using model
with fixed hyperparameters

Adding hyperparameter uncertainty

Model with fixed hyperparameters

N

yi

zi

θ

k

xi

Adding hyperparameter uncertainty

Model with hyperparameter uncertainty

N

yi

zi

θ

k

σ1

σ2

p

xi

Adding hyperparameter uncertainty

Model with fixed hyperparameters

@probabilistic function model(x::Vector{Float64})

prior over degree of polynomial

degree_prior = [0.25, 0.25, 0.25, 0.25]

generate degree (either 1, 2, 3, or 4)

degree = @choice(categorical(degree_prior), "degree")

generate parameters

parameters = Vector{Float64}(degree+1)

for k=1:(degree+1)

parameters[k] = @choice(normal(0, 1), "theta-$k")
end

generate data

y = Vector{Float64}(length(x))

for i=1:length(x)

if degree == 1

y_mean = dot(parameters, [1., x[i]])

elseif degree == 2

y_mean = dot(parameters, [1., x[i], x[i]^2])

elseif degree == 3

y_mean = dot(parameters, [1., x[i], x[i]^2, x[i]^3])

else

y_mean = dot(parameters, [1., x[i], x[i]^2, x[i]^3, x[i]^4])

end

is_outlier = @choice(flip(0.1), "outlier-$i")
noise = is_outlier ? 10.0 : 1.0

y[i] = @choice(normal(y_mean, noise), "y-$i")
end

end

Model with hyperparameter uncertainty

Adding hyperparameter uncertainty

@probabilistic function model(x::Vector{Float64})

prior over degree of polynomial

degree_prior = [0.25, 0.25, 0.25, 0.25]

generate degree (either 1, 2, 3, or 4)

degree = @choice(categorical(degree_prior), "degree")

generate parameters

parameters = Vector{Float64}(degree+1)

for k=1:(degree+1)

parameters[k] = @choice(normal(0, 1), "theta-$k")
end

hyperparameters

inlier_noise = @choice(gamma(2., 1.), "inlier-noise")
outlier_noise = @choice(gamma(10., 1.), "outlier-noise")
prob_outlier = @choice(beta(1., 20.), "prob-outlier")

generate data

y = Vector{Float64}(length(x))

for i=1:length(x)

if degree == 1

y_mean = dot(parameters, [1., x[i]])

elseif degree == 2

y_mean = dot(parameters, [1., x[i], x[i]^2])

elseif degree == 3

y_mean = dot(parameters, [1., x[i], x[i]^2, x[i]^3])

else

y_mean = dot(parameters, [1., x[i], x[i]^2, x[i]^3, x[i]^4])

end

is_outlier = @choice(flip(prob_outlier), "outlier-$i")
noise = is_outlier ? outlier_noise : inlier_noise

y[i] = @choice(normal(y_mean, noise), "y-$i")
end

end

Approximate posterior samples

Inferences using model
without outliers

Inferences using model
with hyperparameter uncertainty

Four data sets

Inferences using model
with fixed hyperparameters

Outline
1. Motivation

2. What is probabilistic programming?

Pedagogical example: simple (or not-so-simple) curve fitting

3. Programmable inference, not just black-box

Application: machine perception via inverse graphics

4. Learning the structure and parameters of probabilistic programs

Application: automatic data modeling for scientific data analysis

5. The MIT Modeling and Inference Stack

Probabilistic models and inference algorithms

Statistics Robotics
Machine
learning

Model: tracks of vehicle & people

Algorithm: Particle filter to track
small changes over time

Model: neural network parameters

Algorithm: ``best'' parameters
found by stochastic gradient
descent

Model: numerical effect sizes

Algorithm: Markov chain Monte
Carlo inference to quantify
uncertainty

Probabilistic programming

Probabilistic
Programming

System

QueryModel
(as code)

Data

Answer

See e.g. Church, published in Goodman*, Mansinghka*, et al. (2008)

Probabilistic
Programming

System

Query

Data

Answer Magic?!!

Model
(as code)

See e.g. Church (Goodman*, Mansinghka*, et al. [2008]), Prolog, ...

Probabilistic programming with programmable inference

Probabilistic
Programming

System

Query

Data

Answer

Inference
Metaprogram,
also as code

Model
(as code)

Probabilistic programming with programmable inference

?

Application: machine perception as inverse graphics

"What does this face look like from the side? Or when lit differently?"

Kulkarni, Kohli, Tenenbaum, and Mansinghka (2015)

Stochastic Scene
Generator

Renderer

Approximate
Likelihood

Scene

Approximate
Reconstruction

Image Data

Kulkarni, Kohli, Tenenbaum, and M. (2015)

Stochastic Scene
Generator

Renderer

Approximate
Likelihood

Scene

Approximate
Reconstruction

Image Data

Texture
Mesh

Camera
& Lighting

Kulkarni, Kohli, Tenenbaum, and M. (2015)

Stochastic Scene
Generator

Renderer

Approximate
Likelihood

Scene

Approximate
Reconstruction

Image Data

Kulkarni, Kohli, Tenenbaum, and M. (2015)

Stochastic Scene
Generator

Renderer

Scene

Approximate
Reconstruction

(Multiple random
executions)

Kulkarni, Kohli, Tenenbaum, and M. (2015)

Stochastic Scene
Generator

Renderer

Approximate
Likelihood

Bottom-up
proposals

Scene

Approximate
Reconstruction

Image Data

Gradient Search &
Slice Sampling

Kulkarni, Kohli, Tenenbaum, and M. (2015)

Stochastic Scene
Generator

Renderer

Approximate
Likelihood

Scene

Approximate
Reconstruction

Image Data

?Texture
Mesh

Camera
& Lighting?

Input
Image

Reconstruction

R(S) = IR

"Find a face shape and texture that matches this input image."

Kulkarni, Kohli, Tenenbaum, and Mansinghka (2015)

Gen: a general-purpose probabilistic programming platform
with programmable inference

Modeling and inference from multiple paradigms
Bayesian networks, Markov random fields, graphics/physics engines, deep neural network

models
Monte Carlo inference, deep inference networks, numerical optimization

Programmable inference, not black-box
"Use Gibbs sampling to update X|Y, then optimize Y|X"
Advanced techniques, e.g. reversible jump and particle MCMC
Custom MCMC/SMC proposals, without requiring users to derive proposal densities and

Jacobians
Easy to combine built-in algorithms with arbitrary user-specified inference code

Fast enough for real-time applications
Out-of-the-box performance competitive with handwritten samplers
Users can optimize performance for slow components

Cusumano-Towner et al. (2018)

struct BodyPose
body_rotation::Point3D
elbow_right_loc::Point3D
elbow_left_loc::Point3D
...

end

3D model Renderer

Inference

Example: body pose inference as inverse graphics

Cusumano-Towner et al. (2018)

Generative model based on a graphics engine
@gen function body_pose_prior()

...
end

@gen function generative_model()

sample pose from prior
pose = @addr(body_pose_prior(), :pose)

render depth image and add blur
image = render_depth_image(pose)
blurred = gaussian_blur(image, 1)

pixel-wise likelihood model
@addr(pixel_noise(blurred, 0.1), :image)

end

struct BodyPose
rotation::Point3
elbow_r_loc::Point3
elbow_l_loc::Point3
...

end

Generative model based on a graphics engine
@gen function body_pose_prior()

...
end

@gen function generative_model()

sample pose from prior
pose = @addr(body_pose_prior(), :pose)

render depth image and add blur
image = render_depth_image(pose)
blurred = gaussian_blur(image, 1)

pixel-wise likelihood model
@addr(pixel_noise(blurred, 0.1), :image)

end

:pose

:rot_z
:elbow_rig

ht_x
:elbow_right_y
:elbow_right_z

:elbow_lef
t_x

:elbow_left_y
:elbow_left_z
...

:image observation /
constraint

Inference

Cusumano-Towner et al. (2018)

...

``Fantasy'' execution traces
from probabilistic program

Execute
x(2)x(1) x(i)

Extract target
variables and data

Target variable
data

x(2)x(1) x(i) H

D

Examples of ``fantasy'' execution traces including target variables and data

Inference using deep learning and Monte Carlo

Monte Carlo in generative models

● Models defined by arbitrary generative code in Julia

● Fast editing of execution traces during MCMC inference, via incremental computation

● Fast resampling of execution traces for SMC inference, via persistent data structures

Deep learning

● Models defined by differentiable TensorFlow computations mixed with Julia code

● Batched gradients with respect to large parameter arrays located on GPU

Gradient-based inference

● Gradients with respect to ~10s of random variables (non-contiguous in memory)

● MAP, HMC, MALA, etc.

Challenge: integrating multiple modeling & inference paradigms

Cusumano-Towner et al. (2018)

@gen function neural_proposal_batched(images::Vector{Matrix{Float64}})

images_flat = vectorize_images(images)

run inference network in batch
output_layer = @addr(neural_network(images_flat), :network)

make prediction for each image given inference network outputs
batch_size = length(images)
for i=1:batch_size

@addr(predict_body_pose(outputs[i,:]), :poses => i)
end

end

:poses
1

:rot_z

:elbow_right_x
:elbow_right_y
:elbow_right_z

:elbow_left_x
:elbow_left_y
:elbow_left_z
...

2
:rot_z

:elbow_right_x
:elbow_right_y
:elbow_right_z

:elbow_left_x
:elbow_left_y
:elbow_left_z
...

3
...

@gen function neural_proposal(image::Matrix{Float64})
image_flat = reshape(image, 1, 128 * 128)
output_layer = @addr(neural_network(image_flat), :network)
@addr(predict_body_pose(output_layer[1,:]), :pose)

end

neural_network = @tensorflow_module begin

@input image_flat Float32 [-1, 128 * 128]
image = tf.reshape(image_flat, [-1, 128, 128, 1])

@param W_conv1 initial_weight([5, 5, 1, 32])
@param b_conv1 initial_bias([32])
h_conv1 = tf.nn.relu(conv2d(image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
...

@param W_fc1 initial_weight([16 * 16 * 64, 1024])
@param b_fc1 initial_bias([1024])
h_fc1 = tf.nn.relu(h_pool3_flat * W_fc1 + b_fc1)

@param W_fc2 initial_weight([1024, 32])
@param b_fc2 initial_bias([32])

@output Float32 (tf.matmul(h_fc1, W_fc2) + b_fc2)
end

:pose
:rot_z
:elbow_right

_x
:elbow_right_y
:elbow_right_z

:elbow_left_
x

:elbow_left_y
:elbow_left_z
...

Performance of Gen's JIT compiler

Uncollapsed
model

Manually collapsed
model

Cusumano-Towner et al. (2018)

High uncertainty due to violated assumptions Lower uncertainty for unsurprising data

Mansinghka*, Kulkarni*, et al. (2013)

Outline
1. Motivation

2. What is probabilistic programming?

Pedagogical example: simple (or not-so-simple) curve fitting

3. Programmable inference, not just black-box

Application: machine perception via inverse graphics

4. Learning the structure and parameters of probabilistic programs

Application: automatic data modeling for scientific data analysis

5. The MIT Modeling and Inference Stack

Virtual experiment simulator, as probabilistic program

Experimental dataLab experiment

...

Use cases for probabilistic programs that model a virtual experiment

1. Screen new batches of data for ETL errors and lab protocol execution errors

2. Detect drift between old and new batches of data

3. Detect multivariate relationships among experimental variables, and quantify
their probable strength

4. Estimate anticipated variability in outcome for a given experimental condition

Experimental dataLab experiment

...

Hard to write

Virtual experiment simulator, as probabilistic program

Virtual experiment simulator, as probabilistic program

Experimental dataLab experiment

...

… but relevant data is
often available

Virtual experiment simulator, as probabilistic program

Experimental dataLab experiment

...

Can we automatically
build probabilistic

programs that model
the data?

?

Automated data modeling for science
via Bayesian probabilistic program synthesis

Mansinghka et al. (arXiv 2015)
Mansinghka et al. (JMLR 2016)

Saad & Mansinghka (NIPS 2016)
Saad & Mansinghka (AISTATS 2017)

Saad & Schaechtle et al. (under review; arXiv 2017)

Technical challenge: structure learning is hard...

Robust automatic data modeling requires learning model structure, not just parameters...

Remember Bayesian network structure learning:

● Search over structures was slow and unreliable
● Hard to include hidden variables, leading to underfitting
● Hard to apply to mixed numerical and discrete data
● Hard to get uncertainty over model structure

… but we can use tools from nonparametric Bayes!

Mansinghka et al. (JMLR 2016; NIPS 2009; CogSci 2006);
Obermeyer et al. (AISTATS; 2014);

10 years of research & engineering towards CrossCat, a nonparametric Bayesian prior
over probabilistic model structure and parameters.

Monte Carlo implementation scales to tables with ~100K rows and ~1K columns

Example dataset from genetic circuit design

~320
measurements

Experimental
condition

One gene
contained in
the circuit

Genes that are not part
of the circuit

Circuit output
(fpkm)

%%bql
SIMULATE riboj00_part_ribozyme, actuator_yfp

FROM data;

%%bql
SIMULATE cysm, ybit FROM data;

%%bql
SELECT riboj00_part_ribozyme, actuator_yfp

FROM data;

%%bql
SELECT cysm, ybit FROM data;

Compare virtual and experimental RNAseq data

%%python
code = export_to_metaprob("data_subset")

Synthesis with BQL and python

In less than 20 lines of code,
we generate probabilistic
programs to model a new

dataset.

%%bql
CREATE TABLE "data_subset" AS

SELECT
"Actuator_yfp",
"riboj00_part_ribozyme",
"Ybit",
"cysM" FROM "data”

CREATE POPULATION FOR "data_subset" WITH SCHEMA (
SET STATTYPES OF

"Actuator_YFP",
"riboj00_part_ribozyme",
"ybiT",
"cysM" TO NUMERICAL);

CREATE GENERATOR FOR "data_subset";
INITIALIZE 100 MODELS;
ANALYZE "data_subset" FOR 50 ITERATIONS;

%%bql
CREATE TABLE "data_subset" AS

SELECT
"Actuator_yfp",
"riboj00_part_ribozyme",
"Ybit",
"cysM" FROM "data”

CREATE POPULATION FOR "data_subset" WITH SCHEMA (
SET STATTYPES OF

"Actuator_YFP",
"riboj00_part_ribozyme",
"ybiT",
"cysM" TO NUMERICAL);

CREATE GENERATOR FOR "data_subset";
INITIALIZE 100 MODELS;
ANALYZE "data_subset" FOR 50 ITERATIONS;

%%python
code = export_to_metaprob("data_subset")

Synthesis with BQL and python
For this demo, we use a subset of all
the data available, namely:

1. A part of the circuit and YFP; and
2. Two genes that weren’t part of the

circuit and should not have
interactions with it YFP.

%%bql
CREATE TABLE "data_subset" AS

SELECT
"Actuator_yfp",
"riboj00_part_ribozyme",
"Ybit",
"cysM" FROM "data”

CREATE POPULATION FOR "data_subset" WITH SCHEMA (
SET STATTYPES OF

"Actuator_YFP",
"riboj00_part_ribozyme",
"ybiT",
"cysM" TO NUMERICAL);

CREATE GENERATOR FOR "data_subset";
INITIALIZE 100 MODELS;
ANALYZE "data_subset" FOR 50 ITERATIONS;

%%python
code = export_to_metaprob("data_subset")

Synthesis with BQL and python

We create a statistical population for
this data

%%bql
CREATE TABLE "data_subset" AS

SELECT
"Actuator_yfp",
"riboj00_part_ribozyme",
"Ybit",
"cysM" FROM "data”

CREATE POPULATION FOR "data_subset" WITH SCHEMA (
SET STATTYPES OF

"Actuator_YFP",
"riboj00_part_ribozyme",
"ybiT",
"cysM" TO NUMERICAL);

CREATE GENERATOR FOR "data_subset";
INITIALIZE 100 MODELS;
ANALYZE "data_subset" FOR 50 ITERATIONS;

%%python
code = export_to_metaprob("data_subset")

Synthesis with BQL and python

Run analysis on an ensemble of 100
models

%%bql
CREATE TABLE "data_subset" AS

SELECT
"Actuator_yfp",
"riboj00_part_ribozyme",
"Ybit",
"cysM" FROM "data”

CREATE POPULATION FOR "data_subset" WITH SCHEMA (
SET STATTYPES OF

"Actuator_YFP",
"riboj00_part_ribozyme",
"ybiT",
"cysM" TO NUMERICAL);

CREATE GENERATOR FOR "data_subset";
INITIALIZE 100 MODELS;
ANALYZE "data_subset" FOR 50 ITERATIONS;

%%python
code = export_to_metaprob("data_subset")

Synthesis with BQL and python

Export the learned ensemble
of models to Metaprob

The result of synthesis:
● executable with Metaprob;
● human readable; and
● editable.

The bql code above learned an ensemble
of 100 models. We inspect the code for
one of them (model #1).

The learned model indicates that
actuator_yfp and riboj00_part_ribozyme
are dependent variables.

This implies that for those two variables,
we synthesized a 2-d Gaussian mixture
model.

To sample new values for actuator_yfp and
riboj00_part_ribozyme, we first need to
sample the mixture component (cluster).

The parametrization, i.e. mean and
standard deviation (std) of the Gaussian
components for the mixture model for
actuator_yfp depends on the previously
sampled cluster id, (cluster-for-actuator_yfp
-and-ribojo00-part_ribyzmye).

We now sample a value for actuator_yfp
from a Gaussian with the previously
determined mean and standard deviation.

riboj00_part _ribozyme and actuator_yfp
are dependent. We use the same cluster id
we sampled previously to determine mean
and standard deviation for the gaussian
component.

We then sample a value for riboj00_part
_ribozyme from an accordingly
parameterized Gaussian component.

The learned model indicates that ybit and
cysm are dependent variables; but
independent from actuator_yfp and
riboj00_part_ribozyme.

We sample a new, different cluster id for
ybit and cysm.

Repeat the process from above and draw
values from one Gaussian for ybit and from
another for cysm with parameters that depend
on the value of cluster-for-ybit-and-cysm.

We return the virtual experiment results,
i.e. the sampled values for:

● actuator_yfp
● riboj00_part_ribozyme
● ybit
● cysm

[335730.39654 0.006075 84.843161 18.668906]

Execution of this program generates virtual data
(generate-virtual-experimental-results-using-model-1)

Virtual data

Execution trace of virtual experiment

[335730.39654 0.006075 84.843161 18.668906]

Execution of this program generates virtual data
(generate-virtual-experimental-results-using-model-1)

Virtual data

Execution trace of virtual experiment

All the random choices the program
makes in one execution

[335730.39654 0.006075 84.843161 18.668906]

Execution of this program generates virtual data
(generate-virtual-experimental-results-using-model-1)

Virtual data

Execution trace of virtual experiment

[-5311.874034 20137.425728 418.947872 -6.874273]

[335730.39654 0.006075 84.843161 18.668906]

Execution of this program generates virtual data
(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

Virtual data

Execution of this program generates virtual data

[-3967.569575 10886.226517 54.636702 46.125753]

[-5311.874034 20137.425728 418.947872 -6.874273]

[335730.39654 0.006075 84.843161 18.668906]

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

Virtual data

[38040.924380 23131.858116 230.307509 147.73948]

[-3967.569575 10886.226517 54.636702 46.125753]

Execution of this program generates virtual data

[-5311.874034 20137.425728 418.947872 -6.874273]

[335730.39654 0.006075 84.843161 18.668906]

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

Virtual data

[909.331470 -2293.825225 10.919185 36.128689]

Execution of this program generates virtual data

[38040.924380 23131.858116 230.307509 147.73948]

[-3967.569575 10886.226517 54.636702 46.125753]

[-5311.874034 20137.425728 418.947872 -6.874273]

[335730.39654 0.006075 84.843161 18.668906]

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

Virtual data

[53525.121077 93310.599669 47.987178 1.289953]...

Execution of this program generates virtual data

[909.331470 -2293.825225 10.919185 36.128689]

[38040.924380 23131.858116 230.307509 147.73948]

[-3967.569575 10886.226517 54.636702 46.125753]

[-5311.874034 20137.425728 418.947872 -6.874273]

[335730.39654 0.006075 84.843161 18.668906]

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

(generate-virtual-experimental-results-using-model-1)

Virtual data

%%bql
SIMULATE riboj00_part_ribozyme, actuator_yfp

FROM data;

%%bql
SIMULATE cysm, ybit FROM data;

%%bql
SELECT riboj00_part_ribozyme, actuator_yfp

FROM data;

%%bql
SELECT cysm, ybit FROM data;

Compare virtual and experimental RNAseq data

What is BayesDB?

BayesDB: An open-source probabilistic programming platform with built-in automatic
model discovery.

BayesDB users can use an SQL-like language to solve data analysis and statistical
inference problems in seconds/minutes that otherwise take hours/days for someone with
PhD-level expertise.

Real data BayesDB
simulations

Linear
statistical

model

What kinds of analysis can BayesDB perform?

Model detail required

Understand Predict Prescribe

Descriptive Exploratory Inferential Predictive Causal Mechanistic

NOTE: BayesDB is a research prototype, but we are currently selecting industry
and government partners for a new open-source version under development

Virtual simulator of the socio-political landscape, as probabilistic program

Data: empirical state of the nationAmerica’s socio-political reality

...

Example applications of BayesDB

Focus on “medium data”:

- 100 - 1M records

- 10 - 1000 fields

Sources of “medium data”:

- People

- Experiments

- New business processes

- “Big data” reduced down
to just what's relevant

Outline
1. Motivation

2. What is probabilistic programming?

Pedagogical example: simple (or not-so-simple) curve fitting

3. Programmable inference, not just black-box

Application: machine perception via inverse graphics

4. Learning the structure and parameters of probabilistic programs

Application: automatic data modeling for scientific data analysis

5. The MIT Modeling and Inference Stack

The MIT Modeling and Inference Stack

Gen : combining generative models, neural nets, optimization, and Monte Carlo

Perception for robotics
Analyzing scientific images
Research on common-sense AI

BayesDB: SQL-like queries and automatic data modeling

Screening databases for errors and potential anomalies
Searching databases interactively
Detecting predictive relationships from sparse data

Metaprob: lightweight, embedded probabilistic programming in Clojure

Cloudless: containerized deployment and distributed inference

The MIT Modeling and Inference Stack

Gen : combining generative models, neural nets, optimization, and Monte Carlo

Perception for robotics
Analyzing scientific images
Research on common-sense AI

BayesDB: SQL-like queries and automatic data modeling

Screening databases for errors and potential anomalies
Searching databases interactively
Detecting predictive relationships from sparse data

Metaprob: lightweight, embedded probabilistic programming in Clojure

Cloudless: containerized deployment and distributed inference

Email vkm@mit.edu
for info on field testing

in 2019

mailto:vkm@mit.edu

